Найти производную f(x)=3log4(5x+9) Найти производную f(x)=3log4(5x+9)

9 Дек 2021 в 19:46
55 +1
0
Ответы
1

Для нахождения производной данной функции f(x) = 3log₄(5x + 9) воспользуемся правилом дифференцирования логарифма:

f(x) = 3log₄(5x + 9)

Мы можем записать логарифм по основанию 4 в виде натурального логарифма с помощью формулы замены основания logₐ(b) = ln(b)/ln(a):

f(x) = 3ln(5x + 9) / ln(4)

Теперь мы можем найти производную данной функции по правилу дифференцирования логарифма:

f'(x) = 3 (1 / (5x + 9)) 5

f'(x) = 3 * 5 / (5x + 9)

f'(x) = 15 / (5x + 9)

Итак, производная функции f(x) = 3log₄(5x + 9) равна f'(x) = 15 / (5x + 9).

16 Апр в 20:38
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 94 835 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир