А вроде бы простая задача. Геометрия В равнобедренной трапеции средняя линия 24 см, диагональ 25 см, а острый угол 60 градусов. Найти основания трапеции.
Никак не могу сообразить как можно использовать длину диагонали

24 Фев 2022 в 19:41
131 +1
0
Ответы
1

Для решения этой задачи нам понадобится использовать свойства равнобедренной трапеции.

Обозначим основания трапеции как (a) и (b). Также обозначим высоту трапеции как (h).

Средняя линия трапеции равна полусумме оснований: (\frac{a + b}{2} = 24).

Диагональ трапеции делит ее на 4 равные трапеции, так как угол между диагоналями равен 60 градусов. Таким образом, мы можем представить трапецию как 4 равнобедренные трапеции.

Теперь можем составить два уравнения:

(a + b = 48)(a^2 + h^2 = 625) (по теореме Пифагора для треугольника, образованного одной из равнобедренных частей трапеции)

Теперь нужно решить систему уравнений 1 и 2. Можно сделать это методом подстановки или сложения/вычитания уравнений. Полученные значения оснований будут ответом на задачу.

Я могу помочь вам с дальнейшими шагами решения, если вы хотите.

16 Апр в 19:17
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 371 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир