Для удобства заменим tg(x) на t:
tg(3x) - t / (1 + tg(3x) * t = -1.
tg(3x) - t = - (1 + tg(3x) * t).
tg(3x) - t = -1 - tg(3x) * t.
tg(3x) + tg(3x) * t = t - 1.
tg(3x) * (1 + t) = t - 1.
tg(3x) = (t - 1) / (1 + t).
tg(3x) = t / (1 + t).
tg(3x) = sin(3x) / cos(3x) = t / (1 + t).
sin(3x) / cos(3x) = t / (1 + t).
sin(3x)(1 + t) = t * cos(3x).
sin(3x) + sin(3x) t = t cos(3x).
sin(3x) - t * cos(3x) = 0.
sin(3x) = t * cos(3x).
(sin(3x))^2 = (t * cos(3x))^2.
sin^2(3x) = t^2 * cos^2(3x).
1 - cos^2(3x) = t^2 * cos^2(3x).
1 = t^2 * cos^2(3x) + cos^2(3x).
1 = cos^2(3x)(t^2 + 1).
cos^2(3x) = 1 / (t^2 + 1).
cos(3x) = ± sqrt(1 / (t^2 + 1)).
3x = ± arccos(sqrt(1 / (t^2 + 1))).
x = ± arccos(sqrt(1 / (t^2 + 1))) / 3.
Итак, x = ± arccos(sqrt(1 / (tg^2(x) + 1))) / 3.
Для удобства заменим tg(x) на t:
tg(3x) - t / (1 + tg(3x) * t = -1.
tg(3x) - t = - (1 + tg(3x) * t).
tg(3x) - t = -1 - tg(3x) * t.
tg(3x) + tg(3x) * t = t - 1.
tg(3x) * (1 + t) = t - 1.
tg(3x) = (t - 1) / (1 + t).
tg(3x) = t / (1 + t).
tg(3x) = sin(3x) / cos(3x) = t / (1 + t).
sin(3x) / cos(3x) = t / (1 + t).
sin(3x)(1 + t) = t * cos(3x).
sin(3x) + sin(3x) t = t cos(3x).
sin(3x) - t * cos(3x) = 0.
sin(3x) = t * cos(3x).
(sin(3x))^2 = (t * cos(3x))^2.
sin^2(3x) = t^2 * cos^2(3x).
1 - cos^2(3x) = t^2 * cos^2(3x).
1 = t^2 * cos^2(3x) + cos^2(3x).
1 = cos^2(3x)(t^2 + 1).
cos^2(3x) = 1 / (t^2 + 1).
cos(3x) = ± sqrt(1 / (t^2 + 1)).
3x = ± arccos(sqrt(1 / (t^2 + 1))).
x = ± arccos(sqrt(1 / (t^2 + 1))) / 3.
Итак, x = ± arccos(sqrt(1 / (tg^2(x) + 1))) / 3.