1) 4sin x +5sin^2 x + 5cos^2 x = 4 Пользуемся тригонометрическими тождествами sin^2 x + cos^2 x = 1: 4sin x + 5(sin^2 x + cos^2 x) = 4 4sin x + 5 = 4 4sin x = -1 sin x = -1/4
2) sin^2 18x = 1/4 sin 18x = ±√(1/4) sin 18x = ±1/2 18x = arcsin(1/2) = π/6 + 2πn или 18x = π - arcsin(1/2) = 5π/6 + 2πn
3) cos^2 x = 4cos x cos x(cos x - 4) = 0 cos x = 0 или cos x = 4 (но такого значения не существует)
4) 36sin x = cos x 36sin x = √(1 - sin^2 x) 36sin x = √(1 - sin^2 x) (36sin x)^2 = 1 - sin^2 x 1296sin^2 x = 1 - sin^2 x 1297sin^2 x = 1 sin x = ±√(1/1297)
1) 4sin x +5sin^2 x + 5cos^2 x = 4
Пользуемся тригонометрическими тождествами sin^2 x + cos^2 x = 1:
4sin x + 5(sin^2 x + cos^2 x) = 4
4sin x + 5 = 4
4sin x = -1
sin x = -1/4
2) sin^2 18x = 1/4
sin 18x = ±√(1/4)
sin 18x = ±1/2
18x = arcsin(1/2) = π/6 + 2πn или 18x = π - arcsin(1/2) = 5π/6 + 2πn
3) cos^2 x = 4cos x
cos x(cos x - 4) = 0
cos x = 0 или cos x = 4 (но такого значения не существует)
4) 36sin x = cos x
36sin x = √(1 - sin^2 x)
36sin x = √(1 - sin^2 x)
(36sin x)^2 = 1 - sin^2 x
1296sin^2 x = 1 - sin^2 x
1297sin^2 x = 1
sin x = ±√(1/1297)
5) 1 + 2sin 2x + 2cos^2 x = 0
1 + 2sin 2x + 2(1 - sin^2 x) = 0
1 + 2sin 2x + 2 - 2sin^2 x = 0
1 + 2sin 2x - 2sin^2 x = -2
(1 + sin 2x)(1 - 2sin 2x) = -2
Таким образом, данные уравнения решены.