Используя свойства числовых неравенств,исследуйте функцию на монотонность F(x)=2-3x3

21 Сен 2022 в 19:41
69 +1
1
Ответы
1

Для исследования функции F(x) = 2 - 3x^3 на монотонность, выразим ее производную:

F'(x) = -9x^2.

Из этого следует, что производная F(x) = 2 - 3x^3 всегда отрицательна при x ≠ 0, что означает, что функция убывает на всей числовой прямой.

Таким образом, функция F(x) = 2 - 3x^3 является монотонно убывающей на всей числовой прямой.

16 Апр в 17:52
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 493 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир