First, let's simplify the expression inside the parentheses:(\dfrac{11}{8}-\dfrac{5}{16}+\dfrac{1}{32})
To do this, we need to find a common denominator for all the fractions. The least common multiple of 8, 16, and 32 is 32.
Rewriting the fractions with a common denominator of 32:(\dfrac{11 \cdot 4}{8 \cdot 4} - \dfrac{5 \cdot 2}{16 \cdot 2} + \dfrac{1}{32} \= \dfrac{44}{32} - \dfrac{10}{32} + \dfrac{1}{32} \= \dfrac{44 - 10 + 1}{32} \= \dfrac{35}{32})
Now we multiply by (\dfrac{8}{15}):(\dfrac{35}{32} \cdot \dfrac{8}{15} \= \dfrac{35 \cdot 8}{32 \cdot 15} \= \dfrac{280}{480} \= \dfrac{7}{12})
Therefore,((\dfrac{11}{8}-\dfrac{5}{16}+\dfrac{1}{32}) \cdot \dfrac{8}{15} = \dfrac{7}{12})
First, let's simplify the expression inside the parentheses:
(\dfrac{11}{8}-\dfrac{5}{16}+\dfrac{1}{32})
To do this, we need to find a common denominator for all the fractions. The least common multiple of 8, 16, and 32 is 32.
Rewriting the fractions with a common denominator of 32:
(\dfrac{11 \cdot 4}{8 \cdot 4} - \dfrac{5 \cdot 2}{16 \cdot 2} + \dfrac{1}{32} \
= \dfrac{44}{32} - \dfrac{10}{32} + \dfrac{1}{32} \
= \dfrac{44 - 10 + 1}{32} \
= \dfrac{35}{32})
Now we multiply by (\dfrac{8}{15}):
(\dfrac{35}{32} \cdot \dfrac{8}{15} \
= \dfrac{35 \cdot 8}{32 \cdot 15} \
= \dfrac{280}{480} \
= \dfrac{7}{12})
Therefore,
((\dfrac{11}{8}-\dfrac{5}{16}+\dfrac{1}{32}) \cdot \dfrac{8}{15} = \dfrac{7}{12})