Для начала заменим cos^4(x) и cos^5(x) через cos^3(x):
cos^4(x) = (cos^2(x))^2 = (1 - sin^2(x))^2 = 1 - 2sin^2(x) + sin^4(x) == 1 - 2(1 - cos^2(x)) + (1 - cos^2(x))^2 = 1 - 2 + 2cos^2(x) - cos^4(x),cos^4(x) = (2cos^2(x) - 1 + cos^4(x))/2,
cos^5(x) = cos(x) cos^4(x) = cos(x) (2cos^2(x) - 1 + cos^4(x))/2 == (2cos^3(x) - cos(x) + cos(x)cos^4(x))/2 == (2cos^3(x) - cos(x) + cos^5(x))/2,cos^5(x) = (2cos^3(x) - cos(x))/2 + (cos^5(x))/2.
Подставим замены в начальное выражение:
(∛((2cos^3(x) - cos(x))/2) - ∛((2cos^3(x) - cos(x))/2 + cos^5(x)/2)) / (1 - cos^3(x)) =((2cos^3(x) - cos(x))/2)^(1/3) - ((2cos^3(x) - cos(x))/2 + cos^5(x)/2)^(1/3) / (1 - cos^3(x)).
Теперь можем упростить дальше:
((2cos^3(x) - cos(x))/2)^(1/3) = (cos^3(x) - 1/2)/2^(1/3),((2cos^3(x) - cos(x))/2 + cos^5(x)/2)^(1/3) = (cos^3(x) - 1/2 + cos^5(x))/2^(1/3).
Итого, выражение упрощается до ((cos^3(x) - 1/2)/2^(1/3) - (cos^3(x) - 1/2 + cos^5(x))/2^(1/3)) / (1 - cos^3(x)).
Для начала заменим cos^4(x) и cos^5(x) через cos^3(x):
cos^4(x) = (cos^2(x))^2 = (1 - sin^2(x))^2 = 1 - 2sin^2(x) + sin^4(x) =
= 1 - 2(1 - cos^2(x)) + (1 - cos^2(x))^2 = 1 - 2 + 2cos^2(x) - cos^4(x),
cos^4(x) = (2cos^2(x) - 1 + cos^4(x))/2,
cos^5(x) = cos(x) cos^4(x) = cos(x) (2cos^2(x) - 1 + cos^4(x))/2 =
= (2cos^3(x) - cos(x) + cos(x)cos^4(x))/2 =
= (2cos^3(x) - cos(x) + cos^5(x))/2,
cos^5(x) = (2cos^3(x) - cos(x))/2 + (cos^5(x))/2.
Подставим замены в начальное выражение:
(∛((2cos^3(x) - cos(x))/2) - ∛((2cos^3(x) - cos(x))/2 + cos^5(x)/2)) / (1 - cos^3(x)) =
((2cos^3(x) - cos(x))/2)^(1/3) - ((2cos^3(x) - cos(x))/2 + cos^5(x)/2)^(1/3) / (1 - cos^3(x)).
Теперь можем упростить дальше:
((2cos^3(x) - cos(x))/2)^(1/3) = (cos^3(x) - 1/2)/2^(1/3),
((2cos^3(x) - cos(x))/2 + cos^5(x)/2)^(1/3) = (cos^3(x) - 1/2 + cos^5(x))/2^(1/3).
Итого, выражение упрощается до ((cos^3(x) - 1/2)/2^(1/3) - (cos^3(x) - 1/2 + cos^5(x))/2^(1/3)) / (1 - cos^3(x)).