Задача с использованием нормального закона станок автоматически изготавливает валики. отклонение диаметра валика от нормы подчинено нормальному закону (0, 0,1). Валик считается годным если отклонение не превосходит d мм. Найти d если вероятность что валик годен -0.9

18 Мар 2023 в 19:41
102 +1
0
Ответы
1

Для решения этой задачи, воспользуемся таблицей стандартного нормального распределения.

Для нормального распределения с параметрами (0,1), значение z-статистики можно рассчитать как z = (d - 0) / 0.1 = d / 0.1.

Так как мы хотим найти значение d при котором вероятность того, что валик годен, составляет 0.9, нам нужно найти значение z, при котором значение функции нормального распределения P(Z < z) равно 0.9.

По таблице нормального распределения находим, что для P(Z < z) = 0.9, z примерно равно 1.28.

Таким образом, мы можем записать выражение: 1.28 = d / 0.1, откуда d = 1.28 * 0.1 = 0.128 мм.

Таким образом, значение d составляет примерно 0.128 мм.

16 Апр 2024 в 16:31
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир