Для начала выразим каждый из комплексных чисел в тригонометрической форме:
cos150 + i sin150 = cos(150°) + i sin(150°) = cos(30° + 120°) + i sin(30° + 120°) = cos30cos120 - sin30sin120 + i(cos30sin120 + sin30cos120)= (sqrt(3)/2 (-1/2)) - (1/2 sqrt(3)/2) + i((sqrt(3)/2 sqrt(3)/2) + (1/2 -1/2))= -sqrt(3)/4 - sqrt(3)/4 + i(3/4 - 1/4)= -sqrt(3)/2 + i/2
cos(-120) + i sin(-120) = cos(-120°) + i sin(-120°) = cos(120°) - i sin(120°)= cos(60° + 60°) - i sin(60° + 60°) = cos60cos60 - sin60sin60 - i(cos60sin60 + sin60cos60)= (1/2 1/2) - (sqrt(3)/2 sqrt(3)/2) - i((1/2 sqrt(3)/2) + (sqrt(3)/2 1/2))= 1/4 - 3/4 - i(sqrt(3)/4 + sqrt(3)/4)= -1/2 - i(sqrt(3)/2)
Теперь найдем частное этих комплексных чисел:
(cos150 + i sin150) / (cos(-120) + i sin(-120)) = (-sqrt(3)/2 + i/2) / (-1/2 - i(sqrt(3)/2))= [(-sqrt(3)/2 + i/2) (-1/2 + i(sqrt(3)/2))] / [(-1/2 - i(sqrt(3)/2)) (-1/2 + i(sqrt(3)/2))]= [(sqrt(3)/4) + sqrt(3)/4 - i(sqrt(3)/4) - i/4] / [(1/4) + 3/4]= [(2*sqrt(3))/4 - i(sqrt(3)/4) + sqrt(3)/4 - i/4] / 1= sqrt(3) - i(sqrt(3))/4 - i/4
Ответ: sqrt(3) - i(sqrt(3))/4 - i/4
Для начала выразим каждый из комплексных чисел в тригонометрической форме:
cos150 + i sin150 = cos(150°) + i sin(150°) = cos(30° + 120°) + i sin(30° + 120°) = cos30cos120 - sin30sin120 + i(cos30sin120 + sin30cos120)
= (sqrt(3)/2 (-1/2)) - (1/2 sqrt(3)/2) + i((sqrt(3)/2 sqrt(3)/2) + (1/2 -1/2))
= -sqrt(3)/4 - sqrt(3)/4 + i(3/4 - 1/4)
= -sqrt(3)/2 + i/2
cos(-120) + i sin(-120) = cos(-120°) + i sin(-120°) = cos(120°) - i sin(120°)
= cos(60° + 60°) - i sin(60° + 60°) = cos60cos60 - sin60sin60 - i(cos60sin60 + sin60cos60)
= (1/2 1/2) - (sqrt(3)/2 sqrt(3)/2) - i((1/2 sqrt(3)/2) + (sqrt(3)/2 1/2))
= 1/4 - 3/4 - i(sqrt(3)/4 + sqrt(3)/4)
= -1/2 - i(sqrt(3)/2)
Теперь найдем частное этих комплексных чисел:
(cos150 + i sin150) / (cos(-120) + i sin(-120)) = (-sqrt(3)/2 + i/2) / (-1/2 - i(sqrt(3)/2))
= [(-sqrt(3)/2 + i/2) (-1/2 + i(sqrt(3)/2))] / [(-1/2 - i(sqrt(3)/2)) (-1/2 + i(sqrt(3)/2))]
= [(sqrt(3)/4) + sqrt(3)/4 - i(sqrt(3)/4) - i/4] / [(1/4) + 3/4]
= [(2*sqrt(3))/4 - i(sqrt(3)/4) + sqrt(3)/4 - i/4] / 1
= sqrt(3) - i(sqrt(3))/4 - i/4
Ответ: sqrt(3) - i(sqrt(3))/4 - i/4