В треугольнике ABC BC=10 AC=14 угол C = 145. Решите треугольник

23 Окт 2023 в 19:41
18 +1
0
Ответы
1

Для начала найдем длину стороны AB с использованием теоремы косинусов:

AB^2 = AC^2 + BC^2 - 2ACBCcos(C)
AB^2 = 14^2 + 10^2 - 21410cos(145°)
AB^2 = 196 + 100 - 280*(-0.819)
AB^2 = 296 + 229
AB^2 = 525
AB = √525
AB ≈ 22.91

Теперь найдем углы противостоящие этим сторонам.

Угол A:
sin(A) = AB / AC
sin(A) ≈ 22.91 / 14
A = sin^(-1)(22.91 / 14)
A ≈ 61.05°

Угол B:
sin(B) = AB / BC
sin(B) ≈ 22.91 / 10
B = sin^(-1)(22.91 / 10)
B ≈ 66.42°

Итак, получаем:
A ≈ 61.05°, B ≈ 66.42°, C = 145°
AB ≈ 22.91, AC = 14, BC = 10

16 Апр в 15:53
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 93 277 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир