Задача по геометрие
Дано: ABCD пар-м P abcd=45cм BNꞱAD BFꞱCD BN:BF=2:3
Найти: AB и AD

11 Дек 2023 в 19:41
34 +1
0
Ответы
1

Для решения данной задачи мы можем воспользоваться теоремой Талеса.

Из условия мы знаем, что BN:BF = 2:3. Значит, можно представить отрезок BN как 2k и отрезок BF как 3k, где k - это коэффициент пропорциональности.

Также из условия дано, что ABCD - параллелограмм. Таким образом, AB = CD и AD = BC.

Теперь рассмотрим треугольникы BNP и BFP. По теореме Талеса, отрезки BN/FP = BP/NF. Известно, что BN = 2k и BF = 3k. Пусть NF = x, тогда FP = 3k - x.

Теперь используем данное равенство для отрезков BN/FP = BP/NF:

2k / (3k - x) = BP / x.

Решив данное уравнение, найдем значение x, затем сможем найти искомые стороны AB и AD.

16 Апр 2024 в 15:44
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир