Баскетболист бросает мяч в кольцо до первого попадания. Вероятность попадания при каждом отдельном броске равна
0,8 . Найди вероятность того, что ему потребуется более пяти попыток.

21 Янв 2024 в 19:41
368 +1
1
Ответы
1

Для того чтобы найти вероятность того, что ему потребуется более пяти попыток, нужно вычислить вероятность того, что он не попадет с первой попытки, с второй, с третьей, с четвертой и с пятой попыток, и найти вероятность того, что он попадет с шестой попытки и далее.

Вероятность не попасть с первой попытки: P(не попадет) = 0.2
Вероятность не попасть с второй попытки: P(не попадет)^2 = 0.2^2 = 0.04
Вероятность не попасть с третьей попытки: P(не попадет)^3 = 0.2^3 = 0.008
Вероятность не попасть с четвертой попытки: P(не попадет)^4 = 0.2^4 = 0.0016
Вероятность не попасть с пятой попытки: P(не попадет)^5 = 0.2^5 = 0.00032

Таким образом, вероятность того, что ему потребуется более пяти попыток, равна сумме этих вероятностей:

P(более 5 попыток) = 0.04 + 0.008 + 0.0016 + 0.00032 = 0.04992

Таким образом, вероятность того, что баскетболисту потребуется более пяти попыток для попадания в кольцо составляет 0.04992 или 4.992%.

16 Апр 2024 в 15:39
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 95 750 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир