25 Янв в 19:40
22 +1
0
Ответы
1

Для решения данного интеграла, преобразуем его выражение:

∫sin(x) d(sin(x)) = ∫sin(x) d(cos(π/2 - x)) (так как sin(x) = cos(π/2 - x))

Заметим, что d(cos(π/2 - x)) = -sin(π/2 - x)dx = -cos(x)dx.

Поэтому интеграл принимает вид:

∫sin(x) d(sin(x)) = -∫sin(x)cos(x)dx

Теперь можем проинтегрировать это выражение:

-∫sin(x)cos(x)dx = -1/2∫sin(2x)dx = 1/4(-cos(2x)) + C,

где C - произвольная постоянная.

Итак, решение данного интеграла ∫sin(x) d(sin(x)) равно 1/4(-cos(2x)) + C.

16 Апр в 15:38
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 89 862 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир