Решите квадратное уравнение решите уравнение ?2 + ? − 3 = 0 теоремой Виета или дискриминантом

12 Апр в 19:40
11 +1
0
Ответы
1

Дано квадратное уравнение ?^2 + ? - 3 = 0.

Найдем дискриминант уравнения:
D = b^2 - 4ac
D = 1^2 - 41(-3)
D = 1 + 12
D = 13

Теперь найдем корни уравнения:
Если D > 0, то у уравнения два действительных корня:
x1,2 = (-b ± √D) / 2a
x1 = (-1 + √13) / 2
x2 = (-1 - √13) / 2

Если D = 0, то у уравнения один действительный корень:
x = -b / 2a

Если D < 0, то у уравнения два комплексных корня:
x1 = (-b + i√|D|) / 2a
x2 = (-b - i√|D|) / 2a

Таким образом, корни данного уравнения равны:
x1 = (1 + √13) / 2
x2 = (1 - √13) / 2

Ответ: x1 = (1 + √13) / 2, x2 = (1 - √13) / 2.

28 Мая в 20:27
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 90 211 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир