24 Сен в 19:40
21 +1
0
Ответы
1

Для начала найдем значение α, при котором ctg α = -3/4.

Так как ctg α = 1/tg α, получаем tg α = -4/3.

Известно, что α принадлежит интервалу (π/2;π), значит α лежит в 2 и 3 квадрантах.

tg α = -4/3, а значит sin α = -4/5, а cos α = -3/5.

Теперь подставим найденные значения sin α и cos α в уравнение 2sinα−5/8cos^2α+ctg α:

2(-4/5) - 5/8 (-3/5)^2 - 3/4 = -8/5 - 45/200 - 3/4 = -8/5 - 9/40 - 3/4 = (-32 - 9 - 30)/40 = -71/40.

Итак, значение выражения 2sinα−5/8cos^2α+ctg α при ctg α = -3/4 при α∈(π/2;π) равно -71/40.

24 Сен в 19:43
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир