To find the value of the given expression, we will first determine the values of each trigonometric function at the specified angles:
cos(30°) = √3 / 2sin(30°) = 1 / 2tan(0°) = 0
Now, we can substitute these values into the expression:
cos^2(30°) - sin(30°) - tan(0°)= (√3 / 2)^2 - 1 / 2 - 0= 3 / 4 - 1 / 2= 3 / 4 - 2 / 4= 1 / 4
Therefore, cos^2(30°) - sin(30°) - tan(0°) = 1 / 4.
To find the value of the given expression, we will first determine the values of each trigonometric function at the specified angles:
cos(30°) = √3 / 2
sin(30°) = 1 / 2
tan(0°) = 0
Now, we can substitute these values into the expression:
cos^2(30°) - sin(30°) - tan(0°)
= (√3 / 2)^2 - 1 / 2 - 0
= 3 / 4 - 1 / 2
= 3 / 4 - 2 / 4
= 1 / 4
Therefore, cos^2(30°) - sin(30°) - tan(0°) = 1 / 4.