To find the value of sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°), we can use the trigonometric identity for the sine of the difference of two angles:
sin(a - b) = sin(a)⋅cos(b) - cos(a)⋅sin(b)
Therefore, sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°) becomes sin(34° - 19°) = sin(15°).
Therefore, sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°) = sin(15°) ≈ 0.258819
To find the value of sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°), we can use the trigonometric identity for the sine of the difference of two angles:
sin(a - b) = sin(a)⋅cos(b) - cos(a)⋅sin(b)
Therefore, sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°) becomes sin(34° - 19°) = sin(15°).
Therefore, sin(34°)⋅cos(19°)−cos(34°)⋅sin(19°) = sin(15°) ≈ 0.258819