Найти диф уравнение решением которого является эта функция y=c1ln(x+1)+(c2e^-x2)

5 Июн 2019 в 19:48
174 +1
0
Ответы
1

Для нахождения дифференциального уравнения, решением которого является данная функция y=c1ln(x+1)+(c2e^-x2), мы должны найти производные этой функции.

y = c1ln(x+1) + (c2e^-x2)

y' = c1/(x+1) - 2c2x e^(-x^2)

Теперь составим дифференциальное уравнение:

y' = c1/(x+1) - 2c2x e^(-x^2)
y'' = -c1/(x+1)^2 - 2c2 e^(-x^2) + 4c2x^2 e^(-x^2)

Таким образом, дифференциальное уравнение, решением которого является функция y=c1ln(x+1)+(c2e^-x2) будет иметь вид:

c1/(x+1)^2 - 2c2 e^(-x^2) + 4c2x^2 e^(-x^2) = 0
21 Апр в 01:35
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 718 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир