22 Июн 2019 в 19:44
251 +1
0
Ответы
1

Для начала преобразуем уравнение, воспользовавшись тригонометрическими тождествами:
5cos2x - 2sin2x = 2
5(cos^2x - sin^2x) - 2(2sinxcosx) = 2
5cos2x - 5sin2x - 4sinxcosx = 2

Теперь воспользуемся формулой двойного угла для косинуса и синуса:
cos2x = 2cos^2x - 1
sin2x = 2sinxcosx

Подставим найденные значения в уравнение:
5(2cos^2x - 1) - 5(2sinxcosx) - 4sinxcosx = 2
10cos^2x - 5 - 10sinxcosx - 4sinxcosx = 2
10cos^2x - 10sinxcosx - 4sinxcosx = 7
10cos^2x - 14sinxcosx = 7

Теперь преобразуем уравнение к виду, где угол будет в одной и той же функции:
cos2x = cos^2x - sin^2x
cos2x = 1 - 2sin^2x
cos2x = 1 - 2(1 - cos^2x)
cos2x = 1 - 2 + 2cos^2x
cos2x = 2cos^2x - 1
cos2x - 2cos^2x = -1
cos(2x) - 2cos(x) = -1

Теперь можно решить это уравнение с помощью методов решения тригонометрических уравнений.

21 Апр в 00:47
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 436 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир