a) y = 5/(x^2 - x + 1)
y' = d/dx (5/(x^2 - x + 1))= -5(2x - 1)/(x^2 - x + 1)^2
b) y = sin(x + sin(x))
y' = d/dx (sin(x + sin(x)))= cos(x + sin(x))(1 + cos(x))
c) y = ((x+1)^3 * √(x-2))/∛((x+1)^2)
y' = d/dx (((x+1)^3 √(x-2))/∛((x+1)^2))= [(3(x+1)^2 √(x-2) + (x+1)^3 (x-2)^(-1/2)) ∛((x+1)^2) - 2/3(x+1)((x+1)^3 √(x-2)) / ((x+1)^2)^(4/3)] / ((x+1)^2)= [(3(x+1)^2 √(x-2) + (x+1)^3 (x-2)^(-1/2)) (x+1) - (2/3)(x+1)(x+1)^3 * √(x-2)] / ((x+1)^2)^(7/3)
a) y = 5/(x^2 - x + 1)
y' = d/dx (5/(x^2 - x + 1))
= -5(2x - 1)/(x^2 - x + 1)^2
b) y = sin(x + sin(x))
y' = d/dx (sin(x + sin(x)))
= cos(x + sin(x))(1 + cos(x))
c) y = ((x+1)^3 * √(x-2))/∛((x+1)^2)
y' = d/dx (((x+1)^3 √(x-2))/∛((x+1)^2))
= [(3(x+1)^2 √(x-2) + (x+1)^3 (x-2)^(-1/2)) ∛((x+1)^2) - 2/3(x+1)((x+1)^3 √(x-2)) / ((x+1)^2)^(4/3)] / ((x+1)^2)
= [(3(x+1)^2 √(x-2) + (x+1)^3 (x-2)^(-1/2)) (x+1) - (2/3)(x+1)(x+1)^3 * √(x-2)] / ((x+1)^2)^(7/3)