Найти значения x [tex]sin^{2} 2x - cos^{2} x +\frac{3}{4} = 0[/tex]

14 Июл 2019 в 19:44
120 +1
0
Ответы
1

Для начала преобразуем уравнение:
[tex]sin^{2} 2x - cos^{2} x +\frac{3}{4} = 0[/tex]

Применим тригонометрические тождества:
[tex]sin^{2} 2x = 1 - cos^{2} 2x[/tex]
[tex]cos^{2} x = 1 - sin^{2} x[/tex]

Подставим полученные выражения в исходное уравнение:
[tex]1 - cos^{2} 2x - (1 - sin^{2} x) +\frac{3}{4} = 0[/tex]
[tex]1 - cos^{2} 2x - 1 + sin^{2} x +\frac{3}{4} = 0[/tex]

Далее перенесем все в одну часть уравнения:
[tex]sin^{2} x - cos^{2} 2x + \frac{3}{4} = 0[/tex]

Теперь подставим в уравнение:
[tex]sin^{2} x - (1-sin^{2} 2x) + \frac{3}{4} = 0[/tex]
[tex]sin^{2} x - 1 + sin^{2} 2x + \frac{3}{4} = 0[/tex]
[tex]2sin^{2} x + sin^{2} 2x - \frac{1}{4} = 0[/tex]

Продолжим преобразование:
[tex]2sin^{2} x + sin^{2} 2x - \frac{1}{4} = 0[/tex]
[tex]4sin^{2} x + sin^{2} 2x - 1 = 0[/tex]

Получили уравнение:
[tex]4sin^{2} x + sin^{2} 2x - 1 = 0[/tex]

Решив это уравнение, найдем значения x, удовлетворяющие исходному уравнению.

20 Апр в 23:17
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 648 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир