To simplify this expression, we'll first rewrite the given expression with the appropriate trigonometric identities:
= ((1 - cos^2a/cos^2a) + (sin^2a + 1/sin^2a)) / ((1 - sin^2a/sin^2a) + (cos^2a + 1/cos^2a))
= ((sin^2a + 1 + cos^2a)/cos^2a) / ((cos^2a + 1 + sin^2a)/sin^2a)
= ((sin^2a + cos^2a + 1)/cos^2a) / ((cos^2a + sin^2a + 1)/sin^2a)
= ((1 + 1)/cos^2a) / ((1 + 1)/sin^2a)
= (2/cos^2a) / (2/sin^2a)
= sin^2a/cos^2a
= tg^2a
Therefore, the simplified form of the given expression is tg^2a.
To simplify this expression, we'll first rewrite the given expression with the appropriate trigonometric identities:
= ((1 - cos^2a/cos^2a) + (sin^2a + 1/sin^2a)) / ((1 - sin^2a/sin^2a) + (cos^2a + 1/cos^2a))
= ((sin^2a + 1 + cos^2a)/cos^2a) / ((cos^2a + 1 + sin^2a)/sin^2a)
= ((sin^2a + cos^2a + 1)/cos^2a) / ((cos^2a + sin^2a + 1)/sin^2a)
= ((1 + 1)/cos^2a) / ((1 + 1)/sin^2a)
= (2/cos^2a) / (2/sin^2a)
= sin^2a/cos^2a
= tg^2a
Therefore, the simplified form of the given expression is tg^2a.