To solve this inequality, we first need to simplify the expression inside the logarithm:
[tex]\sqrt{x+3}-\sqrt{7-x}[/tex]
To simplify this expression, we can rewrite it as a single square root term:
[tex]\sqrt{x+3}-\sqrt{7-x} = \frac{(\sqrt{x+3}-\sqrt{7-x})(\sqrt{x+3}+\sqrt{7-x})}{\sqrt{x+3}+\sqrt{7-x}}[/tex][tex]= \frac{(x+3) - (7-x)}{\sqrt{x+3}+\sqrt{7-x}}[/tex][tex]= \frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}}[/tex]
Now, we can rewrite the given inequality using this expression:
[tex]\log_{2x-8} \left(\frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}}\right) < 1[/tex]
Exponentiating both sides with base tex[/tex]:
[tex]\frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}} < (2x-8)^1[/tex][tex]2x-4 < (2x-8)(\sqrt{x+3}+\sqrt{7-x})[/tex][tex]2x-4 < 2x(\sqrt{x+3}+\sqrt{7-x}) - 8(\sqrt{x+3}+\sqrt{7-x})[/tex][tex]4 < 2x(\sqrt{x+3}+\sqrt{7-x}) - 8(\sqrt{x+3}+\sqrt{7-x})[/tex]
This inequality can be solved further by expanding the terms, simplifying, and finding the values of x that satisfy the inequality.
To solve this inequality, we first need to simplify the expression inside the logarithm:
[tex]\sqrt{x+3}-\sqrt{7-x}[/tex]
To simplify this expression, we can rewrite it as a single square root term:
[tex]\sqrt{x+3}-\sqrt{7-x} = \frac{(\sqrt{x+3}-\sqrt{7-x})(\sqrt{x+3}+\sqrt{7-x})}{\sqrt{x+3}+\sqrt{7-x}}[/tex]
[tex]= \frac{(x+3) - (7-x)}{\sqrt{x+3}+\sqrt{7-x}}[/tex]
[tex]= \frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}}[/tex]
Now, we can rewrite the given inequality using this expression:
[tex]\log_{2x-8} \left(\frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}}\right) < 1[/tex]
Exponentiating both sides with base tex[/tex]:
[tex]\frac{2x-4}{\sqrt{x+3}+\sqrt{7-x}} < (2x-8)^1[/tex]
[tex]2x-4 < (2x-8)(\sqrt{x+3}+\sqrt{7-x})[/tex]
[tex]2x-4 < 2x(\sqrt{x+3}+\sqrt{7-x}) - 8(\sqrt{x+3}+\sqrt{7-x})[/tex]
[tex]4 < 2x(\sqrt{x+3}+\sqrt{7-x}) - 8(\sqrt{x+3}+\sqrt{7-x})[/tex]
This inequality can be solved further by expanding the terms, simplifying, and finding the values of x that satisfy the inequality.