Дано:
cos(a) = -2/5,cos(b) = -15/16
Поскольку sin^2(x) + cos^2(x) = 1, можно найти sin(a) и sin(b):
sin^2(a) = 1 - cos^2(a) = 1 - (-2/5)^2 = 1 - 4/25 = 21/25 => sin(a) = ±√(21/25) = ±3√(7)/5
sin^2(b) = 1 - cos^2(b) = 1 - (-15/16)^2 = 1 - 225/256 = 31/256 => sin(b) = ±√(31/256) = ±√(31)/16
Итак,
cos(a + b) = cos(a)cos(b) - sin(a)sin(b) = (-2/5)(-15/16) - (±3√(7)/5)(±√(31)/16) = 30/80 ± 3√(217)/80
sin(a)sin(b) = (±3√(7)/5)(±√(31)/16) = 3√(217)/80
Поэтому значение выражения cos(a + b)sin(a)sin(b) составляет ±3√(217)/80.
Дано:
cos(a) = -2/5,
cos(b) = -15/16
Поскольку sin^2(x) + cos^2(x) = 1, можно найти sin(a) и sin(b):
sin^2(a) = 1 - cos^2(a) = 1 - (-2/5)^2 = 1 - 4/25 = 21/25 => sin(a) = ±√(21/25) = ±3√(7)/5
sin^2(b) = 1 - cos^2(b) = 1 - (-15/16)^2 = 1 - 225/256 = 31/256 => sin(b) = ±√(31/256) = ±√(31)/16
Итак,
cos(a + b) = cos(a)cos(b) - sin(a)sin(b) = (-2/5)(-15/16) - (±3√(7)/5)(±√(31)/16) = 30/80 ± 3√(217)/80
sin(a)sin(b) = (±3√(7)/5)(±√(31)/16) = 3√(217)/80
Поэтому значение выражения cos(a + b)sin(a)sin(b) составляет ±3√(217)/80.