а)Уравнение функции у: у = ∛(х^(2 )-4х+27) - 1/(3-х)
Найдем производную:у = (x^(2 )-4x+27)^(1/3) - 1/(3-x)у' = (1/3)(x^(2 )-4x+27)^(-2/3)(2x-4) + 1/(3-x)^2
Теперь найдем значение производной у'(0):у'(0) = (1/3)(27)^(-2/3)(0-4) + 1/(3-0)^2у'(0) = (1/3)27^(-2/3)(-4) + 1/9у'(0) = -4/(327^(2/3)) + 1/9у'(0) = -4/(33) + 1/9у'(0) = -4/9 + 1/9у'(0) = -3/9у'(0) = -1/3
б)Уравнение функции у: у = х/2 √(1- х^2 ) + 1/2 arcsin x
Найдем производную:у = x/2(1-x^2)^(1/2) + 1/2arcsin(x)у' = 1/2(1-x^2)^(-1/2)(-2x) + 1/2(1/sqrt(1-x^2))у' = -x/(1-x^2)^(1/2) + 1/(2sqrt(1-x^2))
Теперь найдем значение производной у'(4/5):y'(4/5) = -4/5/(1-(4/5)^2)^(1/2) + 1/(2(1-(4/5)^2)^(1/2))y'(4/5) = -4/5/(1-16/25)^(1/2) + 1/(2(1-16/25)^(1/2))y'(4/5) = -4/5/(9/25)^(1/2) + 1/(2(9/25)^(1/2))y'(4/5) = -4/5/(3/5) + 1/(2(3/5))y'(4/5) = -4/3 + 5/6y'(4/5) = -8/6 + 5/6y'(4/5) = -3/6y'(4/5) = -1/2
в)Уравнение функции у: у = arctg (1+x)/(1-x)
Найдем производную:у = arctg ((1+x)/(1-x))у' = (1/(1+((1+x)/(1-x))^2))((1-1)/(1-x) - (1+1)/(1+x))у' = 1/(1+(1+x)^2/(1-x)^2)(-1/(1-x) -1/(1+x))у' = -1/(1+(1+x)^2/(1-x)^2)*(1/(1-x) + 1/(1+x))
Теперь найдем значение производной у'(2):y'(2) = -1/(1+(1+2)^2/(1-2)^2)(1/(1-2) + 1/(1+2))y'(2) = -1/(1+3^2/(-1)^2)(1/-1 + 1/3)y'(2) = -1/(1+9)(-1 + 1/3)y'(2) = -1/10(-3/3 + 1/3)y'(2) = -1/10*(-2/3)y'(2) = 2/30y'(2) = 1/15
а)
Уравнение функции у: у = ∛(х^(2 )-4х+27) - 1/(3-х)
Найдем производную:
у = (x^(2 )-4x+27)^(1/3) - 1/(3-x)
у' = (1/3)(x^(2 )-4x+27)^(-2/3)(2x-4) + 1/(3-x)^2
Теперь найдем значение производной у'(0):
у'(0) = (1/3)(27)^(-2/3)(0-4) + 1/(3-0)^2
у'(0) = (1/3)27^(-2/3)(-4) + 1/9
у'(0) = -4/(327^(2/3)) + 1/9
у'(0) = -4/(33) + 1/9
у'(0) = -4/9 + 1/9
у'(0) = -3/9
у'(0) = -1/3
б)
Уравнение функции у: у = х/2 √(1- х^2 ) + 1/2 arcsin x
Найдем производную:
у = x/2(1-x^2)^(1/2) + 1/2arcsin(x)
у' = 1/2(1-x^2)^(-1/2)(-2x) + 1/2(1/sqrt(1-x^2))
у' = -x/(1-x^2)^(1/2) + 1/(2sqrt(1-x^2))
Теперь найдем значение производной у'(4/5):
y'(4/5) = -4/5/(1-(4/5)^2)^(1/2) + 1/(2(1-(4/5)^2)^(1/2))
y'(4/5) = -4/5/(1-16/25)^(1/2) + 1/(2(1-16/25)^(1/2))
y'(4/5) = -4/5/(9/25)^(1/2) + 1/(2(9/25)^(1/2))
y'(4/5) = -4/5/(3/5) + 1/(2(3/5))
y'(4/5) = -4/3 + 5/6
y'(4/5) = -8/6 + 5/6
y'(4/5) = -3/6
y'(4/5) = -1/2
в)
Уравнение функции у: у = arctg (1+x)/(1-x)
Найдем производную:
у = arctg ((1+x)/(1-x))
у' = (1/(1+((1+x)/(1-x))^2))((1-1)/(1-x) - (1+1)/(1+x))
у' = 1/(1+(1+x)^2/(1-x)^2)(-1/(1-x) -1/(1+x))
у' = -1/(1+(1+x)^2/(1-x)^2)*(1/(1-x) + 1/(1+x))
Теперь найдем значение производной у'(2):
y'(2) = -1/(1+(1+2)^2/(1-2)^2)(1/(1-2) + 1/(1+2))
y'(2) = -1/(1+3^2/(-1)^2)(1/-1 + 1/3)
y'(2) = -1/(1+9)(-1 + 1/3)
y'(2) = -1/10(-3/3 + 1/3)
y'(2) = -1/10*(-2/3)
y'(2) = 2/30
y'(2) = 1/15