We can simplify the expression by using the trigonometric identity 2sin(x)cos(x) = sin(2x):
Cos^2(t) - 2sin(t)cos(t) + cos^2(t)= Cos^2(t) - sin(2t) + Cos^2(t)= 2Cos^2(t) - sin(2t)= 2(1 - sin^2(t)) - sin(2t)= 2 - 2sin^2(t) - sin(2t)= 2 - 2sin^2(t) - 2sin(t)cos(t)= 2 - 2sin(t)(sin(t) + cos(t))= 2 - 2sin(t)cos(t)= 2Cos(2t)
Therefore, the simplified expression is 2Cos(2t).
We can simplify the expression by using the trigonometric identity 2sin(x)cos(x) = sin(2x):
Cos^2(t) - 2sin(t)cos(t) + cos^2(t)
= Cos^2(t) - sin(2t) + Cos^2(t)
= 2Cos^2(t) - sin(2t)
= 2(1 - sin^2(t)) - sin(2t)
= 2 - 2sin^2(t) - sin(2t)
= 2 - 2sin^2(t) - 2sin(t)cos(t)
= 2 - 2sin(t)(sin(t) + cos(t))
= 2 - 2sin(t)cos(t)
= 2Cos(2t)
Therefore, the simplified expression is 2Cos(2t).