To solve this equation, we can use the trigonometric identity:
sin^2(2x) = 1 - cos^2(2x)
So our equation becomes:
1 - cos^2(2x) = cos(2x) + 4sin^4(x)
Now we can substitute cos(2x) = 1 - 2sin^2(x) and simplify:
1 - (1 - 2sin^2(x))^2 = (1 - 2sin^2(x)) + 4sin^4(x)
Expanding and simplifying:
1 - (1 - 4sin^2(x) + 4sin^4(x)) = 1 - 2sin^2(x) + 4sin^4(x)
1 - 1 + 4sin^2(x) - 4sin^4(x) = 1 - 2sin^2(x) + 4sin^4(x)
4sin^2(x) - 4sin^4(x) = 1 - 2sin^2(x) + 4sin^4(x)
Adding 2sin^2(x) and subtracting 4sin^2(x) from both sides:
6sin^2(x) = 1
Dividing by 6:
sin^2(x) = 1/6
Taking the square root of both sides:
sin(x) = ±√1/6
Therefore, the solutions for x are:
x = arcsin(√1/6) or x = π - arcsin(√1/6) (and any integer multiple of π)
To solve this equation, we can use the trigonometric identity:
sin^2(2x) = 1 - cos^2(2x)
So our equation becomes:
1 - cos^2(2x) = cos(2x) + 4sin^4(x)
Now we can substitute cos(2x) = 1 - 2sin^2(x) and simplify:
1 - (1 - 2sin^2(x))^2 = (1 - 2sin^2(x)) + 4sin^4(x)
Expanding and simplifying:
1 - (1 - 4sin^2(x) + 4sin^4(x)) = 1 - 2sin^2(x) + 4sin^4(x)
1 - 1 + 4sin^2(x) - 4sin^4(x) = 1 - 2sin^2(x) + 4sin^4(x)
4sin^2(x) - 4sin^4(x) = 1 - 2sin^2(x) + 4sin^4(x)
Adding 2sin^2(x) and subtracting 4sin^2(x) from both sides:
6sin^2(x) = 1
Dividing by 6:
sin^2(x) = 1/6
Taking the square root of both sides:
sin(x) = ±√1/6
Therefore, the solutions for x are:
x = arcsin(√1/6) or x = π - arcsin(√1/6) (and any integer multiple of π)