sin(x)cos(pi/3) - sin(pi/3)cos(x) = 0
sin(x)cos(60°) - sin(60°)cos(x) = 0sin(x)(√3 / 2) - (√3 / 2)cos(x) = 0(sin(x)√3) / 2 - (√3 / 2)cos(x) = 0(sin(x)√3) - √3cos(x) = 0sin(x)√3 - cos(x)√3 = 0tan(x) = 1x = π/4 + nπ, n ∈ Z
sin(x)cos(pi/3) - sin(pi/3)cos(x) = 0
sin(x)cos(60°) - sin(60°)cos(x) = 0
sin(x)(√3 / 2) - (√3 / 2)cos(x) = 0
(sin(x)√3) / 2 - (√3 / 2)cos(x) = 0
(sin(x)√3) - √3cos(x) = 0
sin(x)√3 - cos(x)√3 = 0
tan(x) = 1
x = π/4 + nπ, n ∈ Z