To solve this problem, we need to follow the order of operations - Parentheses, Exponents, Multiplication and Division (from left to right), and Addition and Subtraction (from left to right).
First, let's simplify the expression inside the parentheses:
$10.66 : (2\frac{3}{5} + 1\frac{1}{5} - 0.3)$
Convert the mixed fractions to improper fractions:
$2\frac{3}{5} = \frac{13}{5}$
$1\frac{1}{5} = \frac{6}{5}$
Substitute these values back into the expression:
$10.66 : (\frac{13}{5} + \frac{6}{5} - 0.3)$
$10.66 : (\frac{19}{5} - 0.3)$
$10.66 : (\frac{19}{5} - \frac{3}{10})$
$10.66 : (\frac{191}{50} - \frac{15}{50})$
$10.66 : \frac{176}{50}$
$10.66 : 3.52$
Now substitute this back into the original expression:
To solve this problem, we need to follow the order of operations - Parentheses, Exponents, Multiplication and Division (from left to right), and Addition and Subtraction (from left to right).
First, let's simplify the expression inside the parentheses:
$10.66 : (2\frac{3}{5} + 1\frac{1}{5} - 0.3)$
Convert the mixed fractions to improper fractions:
$2\frac{3}{5} = \frac{13}{5}$
$1\frac{1}{5} = \frac{6}{5}$
Substitute these values back into the expression:
$10.66 : (\frac{13}{5} + \frac{6}{5} - 0.3)$
$10.66 : (\frac{19}{5} - 0.3)$
$10.66 : (\frac{19}{5} - \frac{3}{10})$
$10.66 : (\frac{191}{50} - \frac{15}{50})$
$10.66 : \frac{176}{50}$
$10.66 : 3.52$
Now substitute this back into the original expression:
$\frac{1}{3} + 3.028$
Now, add the two values:
$\frac{1}{3} + 3.028 = \frac{1}{3} + \frac{9024}{2970} = \frac{9024+8910}{2970} = \frac{17934}{2970} = 6$
Therefore, the final answer is 6.