Let's first find the values of sin45°, cos45°, sin30°, and cos60°:
sin45° = √2/2cos45° = √2/2sin30° = 1/2cos60° = 1/2
Now we can substitute these values into the expression:
sin45° + cos45° + 2sin30° - 4cos60°= √2/2 + √2/2 + 2(1/2) - 4(1/2)= √2/2 + √2/2 + 1 - 2= √2/2 + √2/2 - 1
Therefore, sin45° + cos45° + 2sin30° - 4cos60° simplifies to √2/2 + √2/2 - 1
Let's first find the values of sin45°, cos45°, sin30°, and cos60°:
sin45° = √2/2
cos45° = √2/2
sin30° = 1/2
cos60° = 1/2
Now we can substitute these values into the expression:
sin45° + cos45° + 2sin30° - 4cos60°
= √2/2 + √2/2 + 2(1/2) - 4(1/2)
= √2/2 + √2/2 + 1 - 2
= √2/2 + √2/2 - 1
Therefore, sin45° + cos45° + 2sin30° - 4cos60° simplifies to √2/2 + √2/2 - 1