Tg(pi/2+3α) * tg(pi-3α) + 1 - sin^2α / 1 - cos^2α
Using trigonometric identities:
tg(pi/2+3α) = cot(3α)
tg(pi-3α) = -tg(3α) = -tan(3α)
1 - sin^2α = cos^2α
1 - cos^2α = sin^2α
Therefore, the expression simplifies to:
cot(3α) * (-tan(3α)) + cos^2α / sin^2α
= -1 + cos^2α / sin^2α
= cos^2α / sin^2α - 1
= (cosα / sinα)^2 - 1
= (cotα)^2 - 1
= cot^2α - 1.
Therefore, the final expression is cot^2α - 1.
Tg(pi/2+3α) * tg(pi-3α) + 1 - sin^2α / 1 - cos^2α
Using trigonometric identities:
tg(pi/2+3α) = cot(3α)
tg(pi-3α) = -tg(3α) = -tan(3α)
1 - sin^2α = cos^2α
1 - cos^2α = sin^2α
Therefore, the expression simplifies to:
cot(3α) * (-tan(3α)) + cos^2α / sin^2α
= -1 + cos^2α / sin^2α
= cos^2α / sin^2α - 1
= (cosα / sinα)^2 - 1
= (cotα)^2 - 1
= cot^2α - 1.
Therefore, the final expression is cot^2α - 1.