For equation 3) y=(3sinx-2cos 2x-9), we can simplify by expanding the cosine term using the double angle formula:
y = 3sin(x) - 2(cos^2(x) - sin^2(x)) - 9 y = 3sin(x) - 2(1-sin^2(x) - sin^2(x)) - 9 y = 3sin(x) - 2 + 4sin^2(x) - 9 y = 4sin^2(x) + 3sin(x) - 11
For equation 4) y=(2sinx+2cos x-x), we can rewrite the equation in terms of sine and cosine to simplify:
y = 2sin(x) + 2cos(x) - x
Let's use the identity sin(x) = cos(π/2 - x) to simplify further:
y = 2sin(x) + 2cos(x) - x y = 2cos(π/2 - x) + 2cos(x) - x y = 2cos(π/2 - x) + 2cos(x) - x y = 2sin(π/2 - x) + 2cos(x) - x y = 2 - 2sin(x) + 2cos(x) - x y = -2sin(x) + 2cos(x) - x + 2
For equation 3) y=(3sinx-2cos 2x-9), we can simplify by expanding the cosine term using the double angle formula:
y = 3sin(x) - 2(cos^2(x) - sin^2(x)) - 9
y = 3sin(x) - 2(1-sin^2(x) - sin^2(x)) - 9
y = 3sin(x) - 2 + 4sin^2(x) - 9
y = 4sin^2(x) + 3sin(x) - 11
For equation 4) y=(2sinx+2cos x-x), we can rewrite the equation in terms of sine and cosine to simplify:
y = 2sin(x) + 2cos(x) - x
Let's use the identity sin(x) = cos(π/2 - x) to simplify further:
y = 2sin(x) + 2cos(x) - x
y = 2cos(π/2 - x) + 2cos(x) - x
y = 2cos(π/2 - x) + 2cos(x) - x
y = 2sin(π/2 - x) + 2cos(x) - x
y = 2 - 2sin(x) + 2cos(x) - x
y = -2sin(x) + 2cos(x) - x + 2