To find the limit of each expression as x approaches a certain value, we can simply substitute that value into the expression and evaluate it.
1) (\lim_{{x \to 3}} (x^2 + 4)) = (3^2 + 4) = (9 + 4) = 13
2) (\lim_{{x \to 0}} (4x^2 - 6x + 1)) = (4(0)^2 - 6(0) + 1) = (0 - 0 + 1) = 1
3) (\lim_{{x \to 0}} (2x^2 + 3)) = (2(0)^2 + 3) = (0 + 3) = 3
4) (\lim_{{x \to 0}} (7x + 2)) = (7(0) + 2) = (0 + 2) = 2
5) (\lim_{{x \to 0}} (3x^2 - 5x^3 + 4)) = (3(0)^2 - 5(0)^3 + 4) = (0 - 0 + 4) = 4
6) (\lim_{{x \to 0}} (4x^4 - 7x^2 + 5)) = (4(0)^4 - 7(0)^2 + 5) = (0 - 0 + 5) = 5
Therefore, the limits of the given expressions as x approaches the specified values are:
1) (\lim_{{x \to 3}} (x^2 + 4)) = 13
2) (\lim_{{x \to 0}} (4x^2 - 6x + 1)) = 1
3) (\lim_{{x \to 0}} (2x^2 + 3)) = 3
4) (\lim_{{x \to 0}} (7x + 2)) = 2
5) (\lim_{{x \to 0}} (3x^2 - 5x^3 + 4)) = 4
6) (\lim_{{x \to 0}} (4x^4 - 7x^2 + 5)) = 5
To find the limit of each expression as x approaches a certain value, we can simply substitute that value into the expression and evaluate it.
1) (\lim_{{x \to 3}} (x^2 + 4)) = (3^2 + 4) = (9 + 4) = 13
2) (\lim_{{x \to 0}} (4x^2 - 6x + 1)) = (4(0)^2 - 6(0) + 1) = (0 - 0 + 1) = 1
3) (\lim_{{x \to 0}} (2x^2 + 3)) = (2(0)^2 + 3) = (0 + 3) = 3
4) (\lim_{{x \to 0}} (7x + 2)) = (7(0) + 2) = (0 + 2) = 2
5) (\lim_{{x \to 0}} (3x^2 - 5x^3 + 4)) = (3(0)^2 - 5(0)^3 + 4) = (0 - 0 + 4) = 4
6) (\lim_{{x \to 0}} (4x^4 - 7x^2 + 5)) = (4(0)^4 - 7(0)^2 + 5) = (0 - 0 + 5) = 5
Therefore, the limits of the given expressions as x approaches the specified values are:
1) (\lim_{{x \to 3}} (x^2 + 4)) = 13
2) (\lim_{{x \to 0}} (4x^2 - 6x + 1)) = 1
3) (\lim_{{x \to 0}} (2x^2 + 3)) = 3
4) (\lim_{{x \to 0}} (7x + 2)) = 2
5) (\lim_{{x \to 0}} (3x^2 - 5x^3 + 4)) = 4
6) (\lim_{{x \to 0}} (4x^4 - 7x^2 + 5)) = 5