Длина отрезка можно найти с помощью формулы расстояния между двумя точками в декартовой системе координат:
d = √((x2 - x1)^2 + (y2 - y1)^2),
где (x1, y1) и (x2, y2) - координаты точек A и B соответственно.
В данном случае:
x1 = 5, y1 = 3 (координаты точки A),x2 = 2, y2 = 3 (координаты точки B).
Подставляем значения в формулу:
d = √((2 - 5)^2 + (3 - 3)^2) = √((-3)^2 + 0^2) = √(9) = 3.
Таким образом, длина отрезка AB равна 3.
Длина отрезка можно найти с помощью формулы расстояния между двумя точками в декартовой системе координат:
d = √((x2 - x1)^2 + (y2 - y1)^2),
где (x1, y1) и (x2, y2) - координаты точек A и B соответственно.
В данном случае:
x1 = 5, y1 = 3 (координаты точки A),
x2 = 2, y2 = 3 (координаты точки B).
Подставляем значения в формулу:
d = √((2 - 5)^2 + (3 - 3)^2) = √((-3)^2 + 0^2) = √(9) = 3.
Таким образом, длина отрезка AB равна 3.