а) ∫(x^2dx)/(x-1) = ∫(x^2 - x + 1 + 1/(x-1))dx = (1/3)x^3 - (1/2)x^2 + x + ln|x-1| + C
б) ∫xe^xdx = xe^x - ∫e^xdx = xe^x - e^x + C
в) ∫(3x^2dx)/(√(3x^3-1)) = ∫(3x^2)/(√(3x^3-1))dx = substitution u = 3x^3 - 1 => du = 9x^2dx => (1/9)du = x^2dx= (1/9) ∫(1/√u)du = (1/9) 2√u + C = (2/9)√(3x^3-1) + C
а) ∫(x^2dx)/(x-1) = ∫(x^2 - x + 1 + 1/(x-1))dx = (1/3)x^3 - (1/2)x^2 + x + ln|x-1| + C
б) ∫xe^xdx = xe^x - ∫e^xdx = xe^x - e^x + C
в) ∫(3x^2dx)/(√(3x^3-1)) = ∫(3x^2)/(√(3x^3-1))dx = substitution u = 3x^3 - 1 => du = 9x^2dx => (1/9)du = x^2dx
= (1/9) ∫(1/√u)du = (1/9) 2√u + C = (2/9)√(3x^3-1) + C