To solve this equation, we can set it equal to zero and then factor it:
[tex]x^2 + x - 80 = 0[/tex]
Now we can factor the equation using the roots of the quadratic formula:
[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
In this case, a = 1, b = 1, and c = -80. Plugging these values into the formula:
[tex]x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-80)}}{2(1)}[/tex]
[tex]x = \frac{-1 \pm \sqrt{1 + 320}}{2}[/tex]
[tex]x = \frac{-1 \pm \sqrt{321}}{2}[/tex]
So the solutions to the equation are:
[tex]x = \frac{-1 + \sqrt{321}}{2}[/tex] and [tex]x = \frac{-1 - \sqrt{321}}{2}[/tex]
To solve this equation, we can set it equal to zero and then factor it:
[tex]x^2 + x - 80 = 0[/tex]
Now we can factor the equation using the roots of the quadratic formula:
[tex]x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
In this case, a = 1, b = 1, and c = -80. Plugging these values into the formula:
[tex]x = \frac{-1 \pm \sqrt{1^2 - 4(1)(-80)}}{2(1)}[/tex]
[tex]x = \frac{-1 \pm \sqrt{1 + 320}}{2}[/tex]
[tex]x = \frac{-1 \pm \sqrt{321}}{2}[/tex]
So the solutions to the equation are:
[tex]x = \frac{-1 + \sqrt{321}}{2}[/tex] and [tex]x = \frac{-1 - \sqrt{321}}{2}[/tex]