Найдите область значения функцииF(x)=(4x+4)/(x^2+2x+2)

15 Сен 2019 в 22:42
119 +1
0
Ответы
1

Для нахождения области значений функции F(x) необходимо изучить значения x, при которых знаменатель функции не равен нулю. Если знаменатель не равен нулю, то значение функции F(x) определено.

Знаменатель у нас равен x^2 + 2x + 2. Найдем корни этого квадратного уравнения:

x^2 + 2x + 2 = 0

D = 2^2 - 412 = 4 - 8 = -4

D < 0, значит уравнение не имеет действительных корней, следовательно, знаменатель функции не равен нулю для всех действительных значений x.

Таким образом, область значений функции F(x) – это множество всех действительных чисел, так как функция определена при любых значениях x.

19 Апр 2024 в 23:35
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 091 автору
Первые отклики появятся уже в течение 10 минут
Прямой эфир