Let's solve each equation one by one:
1) ( \frac{7}{12} + \frac{1}{6} - x \times \frac{4}{5} : \frac{3}{10} = 1)
First, simplify the division: ( \frac{4}{5} : \frac{3}{10} = \frac{4}{5} \times \frac{10}{3} = \frac{40}{15} = \frac{8}{3} )
Now substitute back into the equation:
( \frac{7}{12} + \frac{1}{6} - x \times \frac{8}{3} = 1 )
Find a common denominator for the fractions:
( \frac{7}{12} = \frac{35}{60} )
Therefore, the equation becomes:
( \frac{35}{60} + \frac{10}{60} - x \times \frac{8}{3} = 1)
Now combine the fractions:
( \frac{45}{60} - x \times \frac{8}{3} = 1)
( x \times \frac{8}{3} = \frac{15}{60} )
( x \times \frac{8}{3} = \frac{1}{4} )
Solving for x:
(x = \frac{1}{4} \div \frac{8}{3} = \frac{3}{32} )
Therefore, ( x = \frac{3}{32}).
2) ( \frac{1}{3} - \frac{3}{4} : 2 + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )
First, solve the division:
( \frac{3}{4} : 2 = \frac{3}{4} \div 2 = \frac{3}{8} )
Substitute back into the equation:
( \frac{1}{3} - \frac{3}{8} + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )
Simplify further:
( \frac{1}{3} - \frac{3}{8} + \frac{1}{4} = \frac{1}{3} )
Combine the fractions:
( \frac{8}{24} - \frac{9}{24} + \frac{6}{24} = \frac{8}{24} )
( x = \frac{8}{24} )
( x = \frac{1}{3} )
Therefore, x = 1/3
3) ( \frac{2}{5} \times \frac{5}{6} + x - \frac{3}{8} : 1.1 = \frac{1}{2} )
Solve the multiplication and division first:
( \frac{2}{5} \times \frac{5}{6} = \frac{2}{6} = \frac{1}{3} )
( \frac{3}{8} : 1.1 = \frac{3}{8} \div 1.1 \approx \frac{3}{8} \div 1.1 \approx \frac{27}{88} )
( \frac{1}{3} + x - \frac{27}{88} = \frac{1}{2} )
( \frac{1}{3} + x - \frac{27}{88} = \frac{44}{88} )
( x - \frac{1}{3} = \frac{27}{88} )
( x = \frac{28}{88} + \frac{27}{88} )
( x = \frac{55}{88} )
Therefore, ( x = \frac{55}{88} )
Let's solve each equation one by one:
1) ( \frac{7}{12} + \frac{1}{6} - x \times \frac{4}{5} : \frac{3}{10} = 1)
First, simplify the division: ( \frac{4}{5} : \frac{3}{10} = \frac{4}{5} \times \frac{10}{3} = \frac{40}{15} = \frac{8}{3} )
Now substitute back into the equation:
( \frac{7}{12} + \frac{1}{6} - x \times \frac{8}{3} = 1 )
Find a common denominator for the fractions:
( \frac{7}{12} = \frac{35}{60} )
Therefore, the equation becomes:
( \frac{35}{60} + \frac{10}{60} - x \times \frac{8}{3} = 1)
Now combine the fractions:
( \frac{45}{60} - x \times \frac{8}{3} = 1)
( x \times \frac{8}{3} = \frac{15}{60} )
( x \times \frac{8}{3} = \frac{1}{4} )
Solving for x:
(x = \frac{1}{4} \div \frac{8}{3} = \frac{3}{32} )
Therefore, ( x = \frac{3}{32}).
2) ( \frac{1}{3} - \frac{3}{4} : 2 + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )
First, solve the division:
( \frac{3}{4} : 2 = \frac{3}{4} \div 2 = \frac{3}{8} )
Substitute back into the equation:
( \frac{1}{3} - \frac{3}{8} + \frac{3}{8} \times \frac{2}{3} = \frac{1}{3} )
Simplify further:
( \frac{1}{3} - \frac{3}{8} + \frac{1}{4} = \frac{1}{3} )
Combine the fractions:
( \frac{8}{24} - \frac{9}{24} + \frac{6}{24} = \frac{8}{24} )
( x = \frac{8}{24} )
( x = \frac{1}{3} )
Therefore, x = 1/3
3) ( \frac{2}{5} \times \frac{5}{6} + x - \frac{3}{8} : 1.1 = \frac{1}{2} )
Solve the multiplication and division first:
( \frac{2}{5} \times \frac{5}{6} = \frac{2}{6} = \frac{1}{3} )
( \frac{3}{8} : 1.1 = \frac{3}{8} \div 1.1 \approx \frac{3}{8} \div 1.1 \approx \frac{27}{88} )
Substitute back into the equation:
( \frac{1}{3} + x - \frac{27}{88} = \frac{1}{2} )
Now combine the fractions:
( \frac{1}{3} + x - \frac{27}{88} = \frac{44}{88} )
Simplify further:
( x - \frac{1}{3} = \frac{27}{88} )
( x = \frac{28}{88} + \frac{27}{88} )
( x = \frac{55}{88} )
Therefore, ( x = \frac{55}{88} )