Наименьшее общее кратное (НОК) можно найти с помощью алгоритма:
Разложим все числа на простые множители:28 = 2^2 735 = 5 770 = 2 5 718 = 2 3^224 = 2^3 327 = 3^336 = 2^2 3^254 = 2 3^381 = 3^488 = 2^3 11132 = 2^2 3 11264 = 2^3 3 1125 = 5^275 = 3 5^2150 = 2 3 5^254 = 2 3^390 = 2 3^2 5135 = 3^3 5
Найдем максимальное количество простых множителей для каждого простого числа в разложении:2^3, 3^4, 5^2, 7, 11
Умножим все полученные степени простых чисел, чтобы получить НОК:НОК = 2^3 3^4 5^2 7 11 = 83160
Ответ: НОК чисел 28, 35, 70, 18, 24, 27, 36, 54, 81, 88, 132, 264, 25, 75, 150, 54, 90, 135 равно 83160.
Наименьшее общее кратное (НОК) можно найти с помощью алгоритма:
Разложим все числа на простые множители:
28 = 2^2 7
35 = 5 7
70 = 2 5 7
18 = 2 3^2
24 = 2^3 3
27 = 3^3
36 = 2^2 3^2
54 = 2 3^3
81 = 3^4
88 = 2^3 11
132 = 2^2 3 11
264 = 2^3 3 11
25 = 5^2
75 = 3 5^2
150 = 2 3 5^2
54 = 2 3^3
90 = 2 3^2 5
135 = 3^3 5
Найдем максимальное количество простых множителей для каждого простого числа в разложении:
2^3, 3^4, 5^2, 7, 11
Умножим все полученные степени простых чисел, чтобы получить НОК:
НОК = 2^3 3^4 5^2 7 11 = 83160
Ответ: НОК чисел 28, 35, 70, 18, 24, 27, 36, 54, 81, 88, 132, 264, 25, 75, 150, 54, 90, 135 равно 83160.