Simplifying the expressions:
${x}^{4} \times {x}^{55}$= $x^{4+55}$= $x^{59}$
${n}^{5} \div \: {n}^{4}$= $n^{5-4}$= $n$
( ${k}^{3} ) {}^{5} \times {k}^{2}$= $k^{3 \times 5} \times k^2$= $k^{15} \times k^2$= $k^{15+2}$= $k^{17}$
Therefore, the simplified expressions are:
Simplifying the expressions:
${x}^{4} \times {x}^{55}$
= $x^{4+55}$
= $x^{59}$
${n}^{5} \div \: {n}^{4}$
= $n^{5-4}$
= $n$
( ${k}^{3} ) {}^{5} \times {k}^{2}$
= $k^{3 \times 5} \times k^2$
= $k^{15} \times k^2$
= $k^{15+2}$
= $k^{17}$
Therefore, the simplified expressions are:
${x}^{4} \times {x}^{55}$ = $x^{59}$${n}^{5} \div \: {n}^{4}$ = $n$( ${k}^{3} ) {}^{5} \times {k}^{2}$ = $k^{17}$