Данное выражение можно упростить, используя тригонометрические тождества.
Используем тождество $\sin 2a = 2\sin a\cos a$:
$2\cos 2a\sin 2a = 2\cos 2a(2\sin a\cos a)$
Затем раскрываем скобки:
$2\cos 2a\sin 2a = 4\cos 2a \sin a\cos a$
Используем замену $\cos 2a = 2\cos^2 a - 1$:
$2\cos 2a\sin 2a = 4(2\cos^2 a - 1) \sin a \cos a$
Упрощая полученное выражение, получим итоговый ответ.
Данное выражение можно упростить, используя тригонометрические тождества.
Используем тождество $\sin 2a = 2\sin a\cos a$:
$2\cos 2a\sin 2a = 2\cos 2a(2\sin a\cos a)$
Затем раскрываем скобки:
$2\cos 2a\sin 2a = 4\cos 2a \sin a\cos a$
Используем замену $\cos 2a = 2\cos^2 a - 1$:
$2\cos 2a\sin 2a = 4(2\cos^2 a - 1) \sin a \cos a$
Упрощая полученное выражение, получим итоговый ответ.