a) ((a+b)²/(a-b)²) ((b-a)³/(3(a+b)³))= ((a²+2ab+b²)/(a²-2ab+b²)) ((-a+b)³/(3a³+9a²b+9ab²+3b³))= ((a²+2ab+b²)(-a+b)³)/((a²-2ab+b²)(3a³+9a²b+9ab²+3b³))= ((a+b)(b-a)³)/((a-b)(a+b)³)= -1
г) (a²+4a+4)/(2a-2) (a²-a)/(3a+6)= ((a+2)²)/(2(a-1)) a(a-1)/(3(a+2))= ((a+2)² a(a-1))/(2(a-1) 3(a+2))= (a+2)a/6= a(a+2)/6
в) (2z-2y)/(2z+2y)² (2y+2z)³/(2y-2z)³= (2(z-y))/(2(z+y)²) (2(y+z))³/(2(y-z))³= (2(z-y) 2(y+z)³)/(2(z+y)² 2(y-z)³)= ((z-y)(y+z)³)/((z+y)²(y-z)³)
е) (2x³+2z³)/(xz-x²) : (x³-x²z+xz²)/(x²-z²)= (2(x³+z³)/(x(z-x)) / ((x-z)(x²+z²))= (2(x+z)(x²-xz+z²))/(-x(x-z)(x+z)(x-z))= -2(x²-xz+z²)/(x(x-z))
з) (x⁴-16)/(x²+xy+y²) : (x+y)/(x³-y³) 1/(y-x)³= ((x²+4)(x²-4))/((x+y)²) / (x+y)/(x-y)(x²+xy+y²) 1/(y-x)³= ((x+2)(x-2)(x+y)(x-y))/((x+y)²) (x-y)(x²+xy+y²)/(x+y) 1/(y-x)³= (x+2)(x-2)/(x+y) * 1/(y-x)³
a) ((a+b)²/(a-b)²) ((b-a)³/(3(a+b)³))
= ((a²+2ab+b²)/(a²-2ab+b²)) ((-a+b)³/(3a³+9a²b+9ab²+3b³))
= ((a²+2ab+b²)(-a+b)³)/((a²-2ab+b²)(3a³+9a²b+9ab²+3b³))
= ((a+b)(b-a)³)/((a-b)(a+b)³)
= -1
г) (a²+4a+4)/(2a-2) (a²-a)/(3a+6)
= ((a+2)²)/(2(a-1)) a(a-1)/(3(a+2))
= ((a+2)² a(a-1))/(2(a-1) 3(a+2))
= (a+2)a/6
= a(a+2)/6
в) (2z-2y)/(2z+2y)² (2y+2z)³/(2y-2z)³
= (2(z-y))/(2(z+y)²) (2(y+z))³/(2(y-z))³
= (2(z-y) 2(y+z)³)/(2(z+y)² 2(y-z)³)
= ((z-y)(y+z)³)/((z+y)²(y-z)³)
е) (2x³+2z³)/(xz-x²) : (x³-x²z+xz²)/(x²-z²)
= (2(x³+z³)/(x(z-x)) / ((x-z)(x²+z²))
= (2(x+z)(x²-xz+z²))/(-x(x-z)(x+z)(x-z))
= -2(x²-xz+z²)/(x(x-z))
з) (x⁴-16)/(x²+xy+y²) : (x+y)/(x³-y³) 1/(y-x)³
= ((x²+4)(x²-4))/((x+y)²) / (x+y)/(x-y)(x²+xy+y²) 1/(y-x)³
= ((x+2)(x-2)(x+y)(x-y))/((x+y)²) (x-y)(x²+xy+y²)/(x+y) 1/(y-x)³
= (x+2)(x-2)/(x+y) * 1/(y-x)³