Эy Дана функция у = f(x), где(х + 4х + 5, если -4 < x < 0,f(x) = 15 - 2х, если о < x < 2.если x > 2.а) Найдите f(-5); f(-3); f(0); f(4);б) постройте график функции;в) найдите D(f);г) найдите E(f).
б) График функции f(x) будет иметь две прямые: одну при x от -4 до 0 и вторую при x от 0 до 2. Прямая при x > 2 будет параллельна оси ординат и проходить через точку (2, 11).
в) Областью определения функции D(f) будет множество всех допустимых значений x. В данном случае, D(f) = {-4 < x < 0} U {0 < x < 2} U {x > 2}
г) Областью значений функции E(f) будет множество всех возможных значений y. В данном случае, E(f) = {-15 < y < 5} U {7 < y < 15}
а)
f(-5) = -5 + 4(-5) + 5 = -5 -20 + 5 = -20
f(-3) = -3 + 4(-3) + 5 = -3 -12 + 5 = -10
f(0) = 15 - 20 = 15
f(4) = 15 - 24 = 15 - 8 = 7
б)
График функции f(x) будет иметь две прямые: одну при x от -4 до 0 и вторую при x от 0 до 2. Прямая при x > 2 будет параллельна оси ординат и проходить через точку (2, 11).
в)
Областью определения функции D(f) будет множество всех допустимых значений x. В данном случае, D(f) = {-4 < x < 0} U {0 < x < 2} U {x > 2}
г)
Областью значений функции E(f) будет множество всех возможных значений y. В данном случае, E(f) = {-15 < y < 5} U {7 < y < 15}