Expanding the equation, we get:
(x+1)(x²+2) + (x+2)(x²+1)= x(x²+2) + 1(x²+2) + x(x²+1) + 2(x²+1)= x³ + 2x + x² + 2 + x³ + x + 2x² + 2
Combining like terms and simplifying, we get:
2x³ + 3x² + 3x + 4
Therefore, the simplified form of the expression is 2x³ + 3x² + 3x + 4.
Expanding the equation, we get:
(x+1)(x²+2) + (x+2)(x²+1)
= x(x²+2) + 1(x²+2) + x(x²+1) + 2(x²+1)
= x³ + 2x + x² + 2 + x³ + x + 2x² + 2
Combining like terms and simplifying, we get:
2x³ + 3x² + 3x + 4
Therefore, the simplified form of the expression is 2x³ + 3x² + 3x + 4.