Дано tgα = 15/20 = 3/4
Из определения тангенса и синуса: tgα = sinα/cosα
Поэтому sinα = tgα * cosα
Используем тождество sin^2(α) + cos^2(α) = 1:
(sinα)^2 + (cosα)^2 = 1
(cosα)^2 = 1 - (sinα)^2
cosα = sqrt(1 - (sinα)^2)
Также, tgα = sinα/cosα = (sinα) / sqrt(1 - (sinα)^2) = 3/4
(sinα)^2 = (3/4)^2 * (1 - (sinα)^2)
(sinα)^2 = 9/16 * (1 - (sinα)^2)
16(sinα)^2 = 9 - 9(sinα)^2
16(sinα)^2 + 9(sinα)^2 = 9
25(sinα)^2 = 9
(sinα)^2 = 9/25
sinα = sqrt(9/25) = 3/5
Ответ: sinα = 3/5
Дано tgα = 15/20 = 3/4
Из определения тангенса и синуса: tgα = sinα/cosα
Поэтому sinα = tgα * cosα
Используем тождество sin^2(α) + cos^2(α) = 1:
(sinα)^2 + (cosα)^2 = 1
(sinα)^2 + (cosα)^2 = 1
(cosα)^2 = 1 - (sinα)^2
cosα = sqrt(1 - (sinα)^2)
Также, tgα = sinα/cosα = (sinα) / sqrt(1 - (sinα)^2) = 3/4
(sinα)^2 = (3/4)^2 * (1 - (sinα)^2)
(sinα)^2 = 9/16 * (1 - (sinα)^2)
16(sinα)^2 = 9 - 9(sinα)^2
16(sinα)^2 + 9(sinα)^2 = 9
25(sinα)^2 = 9
(sinα)^2 = 9/25
sinα = sqrt(9/25) = 3/5
Ответ: sinα = 3/5