Упростите выражение: cos^2(п+t)-sin^2(3п/2+t) и sin(п/2-t)*tg(-t) и все это делится на cos(п/2+t)

23 Окт 2019 в 19:52
203 +1
0
Ответы
1

Для упрощения выражений нам нужно воспользоваться тригонометрическими тождествами:

1) cos^2(π+t) - sin^2(3π/2+t) = cos(2(π+t)) - cos(2(3π/2+t)) = cos(2π + 2t) - cos(3π + 4t) = cos(2t) - cos(4t - π) = cos(2t) - cos(4t + π) = -2cos(3t)

2) sin(π/2-t)tg(-t) = cos(t)tg(-t) = sin(t)

Теперь объединим оба выражения:

(-2cos(3t) + sin(t)) / cos(π/2+t) = -(2cos(3t) - sin(t)) / sin(π/2+t) = - (2cos(3t) - sin(t)) / cos(π/2 + t - π/2) = - (2cos(3t) - sin(t)) / cos(t) = -2cos(3t)/cos(t) + (sin(t)/cos(t)) = -2 * tg(3t) + tg(t)

19 Апр 2024 в 09:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 96 424 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир