Для решения данного иррационального уравнения нужно следующее:
1) Возвести обе стороны уравнения в степень 3, чтобы избавиться от корня:
(∛(x³-2))³ = (x-2)³x³ - 2 = (x-2)³
2) Раскроем скобку (x-2)³ с помощью формулы куба разности:
x³ - 2 = x³ - 6x² + 12x - 8
3) Перенесем все слагаемые на одну сторону уравнения и приведем подобные:
0 = -6x² + 12x - 6
4) Разделим все слагаемые на 6:
0 = -x² + 2x - 1
5) Теперь решим полученное квадратное уравнение. Используем метод дискриминанта:
D = 2² - 4(-1)(-1) = 4 - 4 = 0
6) Так как дискриминант равен 0, то уравнение имеет один корень:
x = -b / (2a) = -2 / (2*(-1)) = 1
Ответ: x = 1.
Для решения данного иррационального уравнения нужно следующее:
1) Возвести обе стороны уравнения в степень 3, чтобы избавиться от корня:
(∛(x³-2))³ = (x-2)³
x³ - 2 = (x-2)³
2) Раскроем скобку (x-2)³ с помощью формулы куба разности:
x³ - 2 = x³ - 6x² + 12x - 8
3) Перенесем все слагаемые на одну сторону уравнения и приведем подобные:
0 = -6x² + 12x - 6
4) Разделим все слагаемые на 6:
0 = -x² + 2x - 1
5) Теперь решим полученное квадратное уравнение. Используем метод дискриминанта:
D = 2² - 4(-1)(-1) = 4 - 4 = 0
6) Так как дискриминант равен 0, то уравнение имеет один корень:
x = -b / (2a) = -2 / (2*(-1)) = 1
Ответ: x = 1.