To find the value of the expression sin(32)cos(28) + cos(32)sin(28), we can use the trigonometric identity for the sine of the sum of two angles:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Therefore, sin(32)cos(28) + cos(32)sin(28) can be rewritten as sin(32 + 28):
sin(32)cos(28) + cos(32)sin(28) = sin(60)
Using the special right triangle where the angles are 30-60-90, sin(60) = √3 / 2
Therefore, the value of the expression sin(32)cos(28) + cos(32)sin(28) is √3 / 2.
To find the value of the expression sin(32)cos(28) + cos(32)sin(28), we can use the trigonometric identity for the sine of the sum of two angles:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Therefore, sin(32)cos(28) + cos(32)sin(28) can be rewritten as sin(32 + 28):
sin(32)cos(28) + cos(32)sin(28) = sin(60)
Using the special right triangle where the angles are 30-60-90, sin(60) = √3 / 2
Therefore, the value of the expression sin(32)cos(28) + cos(32)sin(28) is √3 / 2.