The expression sin(pi/5)cos(pi/20) + cos(pi/5)sin(pi/20) can be simplified using the trigonometric identity for the sum of angles:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Therefore, sin(pi/5)cos(pi/20) + cos(pi/5)sin(pi/20)= sin(pi/5 + pi/20)= sin(4pi/20 + pi/20)= sin(5pi/20)= sin(pi/4)= 1/√2
Therefore, the simplified expression is 1/√2.
The expression sin(pi/5)cos(pi/20) + cos(pi/5)sin(pi/20) can be simplified using the trigonometric identity for the sum of angles:
sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
Therefore, sin(pi/5)cos(pi/20) + cos(pi/5)sin(pi/20)
= sin(pi/5 + pi/20)
= sin(4pi/20 + pi/20)
= sin(5pi/20)
= sin(pi/4)
= 1/√2
Therefore, the simplified expression is 1/√2.