26 Ноя 2019 в 19:40
89 +1
0
Ответы
1

The function F(x) is a polynomial of degree 3 with coefficients 16, -15, -18, and 6.

The graph of the function will be a cubic curve with two critical points and one inflection point. The graph may have two local minima or maxima depending on the values of the coefficients.

To find the critical points of the function, we can take the derivative of the function and set it equal to zero:

F'(x) = 48x^2 - 30x - 18

Setting F'(x) = 0 and solving for x, we get:

48x^2 - 30x - 18 = 0
6(8x^2 - 5x - 3) = 0
8x^2 - 5x - 3 = 0

Using the quadratic formula, we can find the solutions for x:

x = (5 ± √(5^2 - 48(-3))) / (2*8)
x = (5 ± √(25 + 96)) / 16
x = (5 ± √121) / 16
x = (5 ± 11) / 16
x = 16/16 or x = -6/16

So, the critical points are x = 1 and x = -3/4.

To determine the nature of the critical points, we can use the second derivative test. If F''(x) > 0 at a critical point, then it is a local minimum. If F''(x) < 0, then it is a local maximum.

F''(x) = 96x - 30

At x = 1, F''(1) = 96(1) - 30 = 66, which is positive. So, x = 1 is a local minimum.

At x = -3/4, F''(-3/4) = 96(-3/4) - 30 = -72 - 30 = -102, which is negative. So, x = -3/4 is a local maximum.

Therefore, the function F(x) has a local minimum at x = 1 and a local maximum at x = -3/4.

19 Апр в 00:49
Не можешь разобраться в этой теме?
Обратись за помощью к экспертам
Название заказа не должно быть пустым
Введите email
Бесплатные доработки
Гарантированные бесплатные доработки
Быстрое выполнение
Быстрое выполнение от 2 часов
Проверка работы
Проверка работы на плагиат
Интересные статьи из справочника
Поможем написать учебную работу
Название заказа не должно быть пустым
Введите email
Доверьте свою работу экспертам
Разместите заказ
Наша система отправит ваш заказ на оценку 92 648 авторам
Первые отклики появятся уже в течение 10 минут
Прямой эфир